
This appendix is part of the LHDNS Whitepaper v1.0 series.

Annex A — Extended Technical Report
Author: Ahmad Hemmati | Website: https://www.twincodesworld.com

Status: Open Source – Technical Supplement | Version: v1.0

License: Apache 2.0 | Repository: github.com/twincodesworld/LHDNS

Scope & purpose: this annex is the authoritative, implementer-oriented technical reference for
LHDNS. It contains canonical serialization rules, crypto bindings, ledger propagation internals,
relay & transport details, privacy measures, governance numeric parameters, KPIs, audit formats,
test vectors, API endpoints, and threat→mitigation mappings. Implementers should treat values
in DEFAULTS as bootstrap parameters tunable by on-chain governance.

DEFAULTS / CONSTANTS (reference)
• HASH_ALG = SHA-256
• SIGNATURE_ALG = Ed25519 (64B sig, 32B pub)
• KEX = X25519, HKDF-SHA256
• AEAD = XChaCha20-Poly1305 (fallback AES-GCM if HW accel)
• TIME_WINDOW = 30 seconds
• DEFAULT_TTL = 30 seconds (interactive)
• CLOCK_SKEW = ±60 seconds (accept)
• MAX_ENTRY_SIZE = 4096 bytes
• GOSSIP_FANOUT_DEFAULT = 5
• DIGEST_INTERVAL = 60 seconds
• POW_BASE_BITS = 16 (bootstrap)
• POW_ADAPT_K = 2.0
• STAKE_MIN_VALIDATOR = 10,000 LHD
• STAKE_MIN_RELAY = 100 LHD
• REPLICATION_FACTOR = 3
• DIGEST_RETENTION_DAYS = 30

Module 1 — Cryptographic & Identity Layer

1.1 Goals

Define canonical message formats and deterministic signature inputs; ensure cross-language
correctness; define hash-token formula and enc_contact encryption.

1.2 Identifiers

• service_id: svc:sha256:<hex> — canonical representation; raw bytes used in crypto (32
bytes).

https://www.twincodesworld.com/

This appendix is part of the LHDNS Whitepaper v1.0 series.

• client_id: long-term pseudonymous identifier (public key) stored locally; used for
optional long-term bindings.

• ephemeral key: per-session ephemeral keypair (Ed25519 for signing, X25519 for KEX).

1.3 Hash-token formula (deterministic)

Recommended deterministic input bytes:

input_bytes = LE32(len(eph_pub)) || eph_pub || service_id_bytes ||
service_nonce || LE64(time_window)
hash = SHA256(input_bytes) # 32 bytes; index token

• eph_pub = ephemeral public key bytes (raw).
• service_id_bytes = 32 raw bytes.
• service_nonce = optional per-service nonce (random ≤ 32B), reduces bruteforce.
• time_window = floor(ts / TIME_WINDOW).

Rationale: includes eph_pub to increase brute-force cost; service_nonce prevents precompute;
time_window bounds lifetime.

1.4 Canonical serialization & signature input (must)

• Use Canonical CBOR (RFC 8949) as binary canonical form.
• Implementers using JSON MUST first canonicalize via JCS (JSON Canonicalization

Scheme) then CBOR-encode the result for signing/AAD.
• Signature input is CBOR-canonical bytes of object:

{ "hash": "<hex>", "ts": <uint64>, "service_id": <32-byte raw> }

• service_id must be raw bytes, not ASCII prefixed string.
• The AEAD associated data (AAD) for enc_contact is the CBOR canonical serialization

of the full entry with the enc_contact field omitted.

Verification: Verifier reconstructs canonical CBOR and verifies Ed25519 over canonical bytes;
any deviation causes rejection.

1.5 enc_contact encryption (concrete KDF + AEAD)

Pseudocode (reference):

Client side: preparing enc_contact
client_x25519_priv, client_x25519_pub = X25519_keypair()
shared = X25519(client_x25519_priv, service_x25519_pub) # raw 32B
salt = service_id_bytes # 32B
info = b"lhdns/enc_contact/v1"
K = HKDF_SHA256(shared, salt=salt, info=info, length=32)
aad = canonical_cbor(entry_without_enc_contact)

This appendix is part of the LHDNS Whitepaper v1.0 series.

ciphertext = XChaCha20_Poly1305_Seal(K, plaintext=enc_contact_plain_cbor,
aad=aad)
enc_contact = base64(ciphertext)

Service side:

shared = X25519(service_x25519_priv, client_x25519_pub)
K = HKDF_SHA256(shared, salt=service_id_bytes, info=b"lhdns/enc_contact/v1",
length=32)
plaintext = XChaCha20_Poly1305_Open(K, ciphertext, aad=aad)

• plaintext must be canonical CBOR or JCS→CBOR.
• Use XChaCha20-Poly1305 (safe nonce); AES-GCM allowed with careful nonce

management & HW accel.

1.6 Entry canonical JSON (canonical structure for ledger)

Canonical entry fields (human-readable view — actual serialized bytes must be canonical
CBOR):

{
 "version": 1,
 "service_id": "<32B raw or svc:sha256:...>",
 "hash": "0x...",
 "eph_pub": "<base64>",
 "enc_contact": "<base64>",
 "ts": 1690000000,
 "ttl": 30,
 "sig": "<base64>",
 "metadata": { ... }
}

• sig = Ed25519 signature over the canonical CBOR bytes of object { "hash": …, "ts":
…, "service_id": … }.

1.7 Local-node validation

Steps on reception:

1. Validate CBOR schema & version.
2. Check ts within CLOCK_SKEW.
3. Check ttl within allowed bounds.
4. Recompute hash from eph_pub || service_id || service_nonce || time_window.
5. Verify sig with eph_pub.
6. Reject malformed/oversize enc_contact.
7. Rate-limit by eph_pub, circuit or authenticated account; optionally require PoW or

micro-fee.
8. If accepted: index by service_id, gossip, keep in-memory until ts + ttl + grace.

This appendix is part of the LHDNS Whitepaper v1.0 series.

1.8 Error codes (examples)

• 400 — schema error
• 401 — invalid signature
• 402 — fee/PoW required
• 429 — rate-limited
• 410 — expired

1.9 Testing checklist (Module1)

• signature vectors, invalid sig rejection, ttl enforcement, PoW enforcement, enc_contact
decrypt stress, replay tests.

Module 2 — Ledger & Propagation (DLN internals)

2.1 Goals

Low-latency ephemeral ledger optimized for short-lived indexed entries (not a permanent
blockchain). Prioritize memory/in-memory indexes, digest auditability, and fast gossip.

2.2 Roles

• Validator nodes: full validation, gossip, indexing, digest publication.
• Relay nodes: forward traffic, may not fully validate.
• Light/edge nodes: accept client submissions, perform quick validation.
• Auditor nodes: collect signed digests and perform cross-checks (optional).

2.3 Propagation model

• Epidemic gossip (push-pull).
• Default fanout k = GOSSIP_FANOUT_DEFAULT (5), adaptive by network size.
• Dedup via per-round Bloom filter.
• Partial redundancy: each entry gossips until TTL expiry or gossip horizon.

2.4 Storage model

• In-memory ephemeral store; no durable storage of full entries (only digests retained).
• Indexing key = service_id → list of entries valid within [ts, ts + ttl].
• Grace window default +5s for clock skew.

2.5 Validation on gossip reception

• Schema/version check.
• Verify signature.
• Recompute hash.

This appendix is part of the LHDNS Whitepaper v1.0 series.

• Rate-limit per eph_pub & per peer.
• Index & propagate if valid; penalize peer on invalid.

2.6 Dedup & replay protection

• Each node maintains Bloom filter for recent hash values; duplicate suppressed.
• Replay prevented via (hash, eph_pub, ts) tuple uniqueness + bloom.

2.7 Gossip topology & peer sampling

• Unstructured P2P with partial views (Kademlia-like sampling recommended).
• Fanout adaptive: k = clamp(log2(N) * factor, min=3, max=12).
• Backoff under congestion.

2.8 Capacity & pruning

• Node memory cap configurable (e.g., 100k active entries).
• Prune by TTL + grace; maintain dropped-hash Bloom for short period to prevent replay.

2.9 Audit & Digest subsystem (full spec)

2.9.1 Merkle digest construction

• Leaf = SHA256(0x00 || CBOR_canonical(entry_without_enc_contact)).
• Build binary Merkle tree over sorted leaf hashes (lexicographic).
• Root = SHA256(0x01 || left || right) recursively.

2.9.2 Signed digest document (format)

{
 "node_id": "<b64(node_pub)>",
 "ts": 1690000000,
 "interval_seconds": 60,
 "merkle_root": "0x...",
 "entry_count": 1234,
 "bloom_filter": "<base64>",
 "sig": "<b64(Sign_node(CBOR_canonical(doc_except_sig)))>"
}

APIs

• GET /digest/latest — returns latest signed digest JSON.
• POST /proof — body { "leaf_hash": "0x...", "digest_ts": ... } → returns

inclusion proof (list of sibling hashes) or 404.

2.9.3 Audit cross-check protocol

This appendix is part of the LHDNS Whitepaper v1.0 series.

• Auditors fetch digests from random m validators; compare merkle_root.
• If mismatches, request inclusion proofs from both sides to trace divergence.
• Discrepancy triggers governance notification; signed digests are evidence for slashing.

2.10 Anti-Sybil & node admission

• Node keys signed into P2P ID.
• Admission: stake OR PoW token (configurable).
• Reputation based on uptime/correctness; repeated misbehavior → ban.

2.11 Testing checklist (Module2)

• gossip latency under churn, digest correctness, partition recovery tests, replay injection
tests.

Module 3 — Service Delivery & Transport

3.1 Access model

• Services subscribe by service_id to index and attempt to decrypt enc_contact entries.

3.2 Connection bootstrap

Flow:

1. Client constructs hash & submits ledger entry (Module1).
2. Validators propagate; service matches & decrypts enc_contact.
3. Service gets client_contact (relay token, websocket conn id, etc.) and connects via

relay or client-initiated socket.
4. Mutual ECDH (X25519) → session keys; use DTLS/SRTP for media or secure

WebSocket/QUIC for data.

3.3 Transport options

• Direct (preferred): WebRTC (DataChannel), QUIC.
• Relay-assisted: TURN-like relays or LHDNS relays.
• Multipath: split on different relays for unlinkability.

3.4 Relay model & incentives

• Relays earn micro-payments via off-chain channels.
• Proof-of-forwarding required for rewards (tiny cryptographic receipts).
• Relays stake tokens for trust; low-reputation relays are deprioritized.

3.5 Failure modes & recovery

This appendix is part of the LHDNS Whitepaper v1.0 series.

• If entry expired or session broken → client re-resolves & retries (exponential backoff).
• Under service overload, enforce nonce validation or require micro-fee.

Module 4 — Privacy & Anonymity Enhancements

4.1 Goals

Sender/receiver anonymity, unlinkability, resist traffic-analysis.

4.2 Query privacy

• Optional onion submission: client routes submission via multiple relays to hide origin (3
hops default).

• Cover traffic & padding: nodes inject dummy entries; standardize entry size.
• Batching: group submissions in 100ms windows.

4.3 Ledger privacy

• Index blinding: per-epoch salt for hashed identifiers to prevent long-term correlation
(careful: requires epoch sync).

• Digests contain only digested leaf hashes; auditors hold proofs but not entries.

4.4 Transport privacy

• Multipath forwarding; relay rotation; optional mixnet integration for high-sensitivity
flows.

Module 5 — Trust, Governance & Sybil Resistance

5.1 Numeric & adaptive defaults (bootstrap)

• POW_BASE_BITS = 16; POW_ADAPT_K = 2.0; clamp [8,28].
• STAKE_MIN_VALIDATOR = 10k LHD; STAKE_MIN_RELAY = 100 LHD.
• REPUTATION_DECAY_HALF_LIFE = 30 days.

5.2 Adaptive PoW formula

observed = submissions_last_minute / active_clients_estimate
target_rate = 1.0 # per-client-per-minute baseline
delta = log2(max(observed/target_rate, 1.0))
new_bits = clamp(POW_BASE_BITS + round(POW_ADAPT_K * delta), 8, 28)

Nodes include new_bits in digest so clients adapt PoW.

5.3 Reputation & slashing

This appendix is part of the LHDNS Whitepaper v1.0 series.

• Reputation = moving-window metric of uptime, correctness, forwarding ratio.
• Misbehavior → slashing proportionate to stake.

5.4 Governance model

• On-chain param updates through proposals/votes (stake+reputation weighted).
• Emergency fast-quorum path for active attacks (time-locked adjustments).

Module 6 — Integration & Interoperability

6.1 Gateways

• Translate DNS names ↔ service_id descriptors.
• Provide bootstrap descriptors for first-time connections (search engines, indexes).
• Gateways are trusted proxies for migration; minimize their use for privacy.

6.2 Dual-stack & Fallback policy

• LHDNS local node exposes a stub resolver (127.0.0.1:53 or DoH endpoint).
• No silent fallback to DNS — client must prompt user or have explicit config to allow

automatic fallback.
• Gateways must declare logging & manifest.

6.3 Enterprise opt-in logging

• Service side can request opt-in logging; enc_contact contains consent flag.
• Logging gateways must store logs off-ledger under enterprise control and publish signed

receipts.

Module 7 — Security & Threat Model

7.1 Actor models

• Local adversary (ISP), regional observer, global passive adversary (GPA), global active
adversary (GAA), colluding relays.

7.2 Threat→Mitigation (short)

Expand into a table for implementers (see later test & audit).

(See "Threat→Mitigation table" near end.)

Module 8 — Performance, Sharding & Scalability

This appendix is part of the LHDNS Whitepaper v1.0 series.

8.1 Sharding / partitioning

• Partition by first byte of service_id (256 partitions); each partition replicated R =
REPLICATION_FACTOR.

• Node assignment balanced by capacity score; cluster bridges for cross-region
subscriptions.

8.2 Epidemic gossip scaling

• O(log N) convergence expected; fanout adaptive.

8.3 KPI targets (operational)

• Descriptor fetch: P50 <150ms / P90 <300ms / P99 <800ms.
• Entry propagation: P50 <200ms / P90 <800ms / P99 <2s.
• E2E secure bootstrap: P50 <500ms / P90 <1.2s / P99 <2.5s.
• Node memory: target <100k active entries.

Module 9 — Monitoring, Metrics & Auditing

9.1 Metrics exposure

• /metrics endpoint (Prometheus style): histograms for submission latency, propagation
latency, digest mismatch count, peer-count, memory usage.

9.2 Audit procedures

• Auditors periodically fetch GET /digest/latest from a quorum, cross-check roots;
request inclusion proofs as needed; report misbehavior to governance.

Module 10 — Example End-to-End: Anonymous Chat
(Detailed)
(Condensed sequence including canonical message examples)

1. Descriptor & Nonce (service publishes descriptor):

{
 "service_id":"svc:sha256:af12...bc",
 "service_pubkey":"<b64(pub)>",
 "accepted_protocols":["webrtc","websocket"],
 "nonce_policy":{"rot_interval":30}
}

2. Client prepares ephemeral context

This appendix is part of the LHDNS Whitepaper v1.0 series.

• Generate A_eph_priv/pub. Choose onion path [R1,R2,R3].

3. Compute hash_token

• time_window=floor(now/30)
• hash=SHA256(LE32(len(A_eph_pub))||A_eph_pub||service_id||nonce_service|

|LE64(time_window))

4. Build enc_contact_plain (CBOR canonical)

{
 "client_eph_pub":"<b64>",

"client_contact":{"type":"websocket","relay":"relay.example.net","conn_id":"x
yz123"},
 "ts":169xxxxxxx,
 "nonce_client":"rand128",
 "client_sig":"<sig_on(hash||ts)>"
}

5. Encrypt enc_contact (Module1) → build entry → submit via onion
6. DLN propagation (Module2) → service subscription sees entry → decrypts → verify

client_sig → use client_contact.
7. Session establishment (Module3): service connects to relay or client-initiated socket;

ECDH → session keys; end-to-end AEAD used for media/data.
8. Teardown: after TTL entry removed; bloom filters short-lived prevent replay.

Expected latencies (practical)

• Descriptor fetch: 100–300 ms.
• Propagation to service: 200 ms — 1s typical.
• Session bootstrap: ~200–800 ms depending on relays.

Test Vectors, Schema & Example JSON (for implementers)

Example canonical CBOR signing input (illustrative)

• CBOR-encode canonical object { "hash": "0x9f2a...6d", "ts": 169...,
"service_id": <32 raw> } and sign with Ed25519.

Test vector (concrete)

• Provide known inputs and expected hash + sig for implementers to verify.

(Implementers: request full test vector file if needed — can be generated deterministically from
seed values.)

This appendix is part of the LHDNS Whitepaper v1.0 series.

Threat → Mitigation Table (expanded)

Threat Likelihood Impact Mitigation Residual Risk
Sybil (fake

nodes) Medium High PoW + stake + reputation (Module
5) Reduced, not zero

Traffic
analysis High High Onion submission, multipath, cover

traffic
GPA remains

possible
Descriptor
poisoning Medium Medium Signed descriptors, gossip

validation, digest audits Low

Replay attacks Medium Medium Nonce + TTL tokens, clock skew
policy Low

DoS (node
flooding) High High Rate-limit, adaptive PoW, micro-

fees, slashing Manageable

Key
compromise Low High

Ephemeral key rotation, forward
secrecy (X25519 + HKDF), rapid

revocation

Still critical if long-
term keys leaked

Relay
collusion Medium High Multipath routing, stake-weighted

relay selection, proof-of-forwarding
Risk if large relay set

compromised

Clock desync Medium Medium
CLOCK_SKEW ±60s, fallback

nonce_server_proof, adaptive PoW
under skew

Possible false
negatives under
severe desync

Operational notes & implementation checklist (summary)
• Implement canonical CBOR pipeline precisely (JSON→JCS→CBOR if using JSON).
• Provide SDKs that hide canonicalization for application developers.
• Implement digest collector/auditor service from day 0 (safety).
• Phase rollout: private testnet → incentivized public testnet → pilot integrations

(browsers/gateways) → mainnet.

Appendix: API endpoints (example)
• POST /entry — submit ledger entry (returns 202 accepted or error).
• GET /resolve?service_id=<id> — returns active entries for a service (for

gateway/local debugging).
• GET /digest/latest — signed digest.
• POST /proof — inclusion proof request.
• /metrics — Prometheus metrics.

Authentication & rate-limit: local nodes may require bearer tokens for high-volume
submissions (per implementer policy).

This appendix is part of the LHDNS Whitepaper v1.0 series.

Closing / final remarks
This Annex A is the final integrated technical report — canonical serialization, crypto bindings,
PoW/stake numbers, Merkle digest format + APIs, sharding plan, KPIs, testing checklists,
privacy mitigations, and end-to-end example flows are included and linked to specific modules.
Values marked as DEFAULTS are bootstrap values: they must be tuned on-testnet and then set
via governance.

	Annex A — Extended Technical Report
	DEFAULTS / CONSTANTS (reference)
	Module 1 — Cryptographic & Identity Layer
	1.1 Goals
	1.2 Identifiers
	1.3 Hash-token formula (deterministic)
	1.4 Canonical serialization & signature input (must)
	1.5 enc_contact encryption (concrete KDF + AEAD)
	1.6 Entry canonical JSON (canonical structure for ledger)
	1.7 Local-node validation
	1.8 Error codes (examples)
	1.9 Testing checklist (Module1)

	Module 2 — Ledger & Propagation (DLN internals)
	2.1 Goals
	2.2 Roles
	2.3 Propagation model
	2.4 Storage model
	2.5 Validation on gossip reception
	2.6 Dedup & replay protection
	2.7 Gossip topology & peer sampling
	2.8 Capacity & pruning
	2.9 Audit & Digest subsystem (full spec)
	2.9.1 Merkle digest construction
	2.9.2 Signed digest document (format)
	2.9.3 Audit cross-check protocol

	2.10 Anti-Sybil & node admission
	2.11 Testing checklist (Module2)

	Module 3 — Service Delivery & Transport
	3.1 Access model
	3.2 Connection bootstrap
	3.3 Transport options
	3.4 Relay model & incentives
	3.5 Failure modes & recovery

	Module 4 — Privacy & Anonymity Enhancements
	4.1 Goals
	4.2 Query privacy
	4.3 Ledger privacy
	4.4 Transport privacy

	Module 5 — Trust, Governance & Sybil Resistance
	5.1 Numeric & adaptive defaults (bootstrap)
	5.2 Adaptive PoW formula
	5.3 Reputation & slashing
	5.4 Governance model

	Module 6 — Integration & Interoperability
	6.1 Gateways
	6.2 Dual-stack & Fallback policy
	6.3 Enterprise opt-in logging

	Module 7 — Security & Threat Model
	7.1 Actor models
	7.2 Threat→Mitigation (short)

	Module 8 — Performance, Sharding & Scalability
	8.1 Sharding / partitioning
	8.2 Epidemic gossip scaling
	8.3 KPI targets (operational)

	Module 9 — Monitoring, Metrics & Auditing
	9.1 Metrics exposure
	9.2 Audit procedures

	Module 10 — Example End-to-End: Anonymous Chat (Detailed)
	Expected latencies (practical)

	Test Vectors, Schema & Example JSON (for implementers)
	Example canonical CBOR signing input (illustrative)
	Test vector (concrete)

	Threat → Mitigation Table (expanded)
	Operational notes & implementation checklist (summary)
	Appendix: API endpoints (example)
	Closing / final remarks

