Annex A — Extended Technical Report

Author: Ahmad Hemmati | Website: https://www.twincodesworld.com

Status: Open Source - Technical Supplement | Version: v1.0
License: Apache 2.0 | Repository: github.com/twincodesworld/LHDNS

Scope & purpose: this annex is the authoritative, implementer-oriented technical reference for
LHDNS. It contains canonical serialization rules, crypto bindings, ledger propagation internals,
relay & transport details, privacy measures, governance numeric parameters, KPIs, audit formats,
test vectors, API endpoints, and threat—mitigation mappings. Implementers should treat values
in DEFAULTS as bootstrap parameters tunable by on-chain governance.

DEFAULTS / CONSTANTS (reference)

HASH_ALG = SHA-256

SIGNATURE_ALG = Ed25519 (64B sig, 32B pub)
KEX =X25519, HKDF-SHA256

AEAD = XChaCha20-Poly1305 (fallback AES-GCM if HW accel)
TIME WINDOW = 30 seconds

DEFAULT_TTL = 30 seconds (interactive)
CLOCK _SKEW = =£60 seconds (accept)

MAX _ENTRY_SIZE = 4096 bytes
GOSSIP_FANOUT DEFAULT =5

DIGEST INTERVAL = 60 seconds

POW_BASE BITS = 16 (bootstrap)
POW_ADAPT K=2.0
STAKE MIN VALIDATOR = 10,000 LHD
STAKE MIN RELAY =100 LHD
REPLICATION_FACTOR =3

DIGEST RETENTION DAYS =30

Module 1 — Cryptographic & Identity Layer

1.1 Goals

Define canonical message formats and deterministic signature inputs; ensure cross-language
correctness; define hash-token formula and enc_contact encryption.

1.2 Identifiers

e service id: svc:sha256:<hex>— canonical representation; raw bytes used in crypto (32
bytes).

This appendix is part of the LHDNS Whitepaper v1.0 series.

https://www.twincodesworld.com/

e client_id: long-term pseudonymous identifier (public key) stored locally; used for
optional long-term bindings.
o ephemeral key: per-session ephemeral keypair (Ed25519 for signing, X25519 for KEX).
1.3 Hash-token formula (deterministic)

Recommended deterministic input bytes:

input bytes = LE32(len(eph pub)) || eph pub || service id bytes ||
service nonce || LE64 (time window)
hash = SHA256 (input bytes) # 32 bytes; index token

e eph pub = ephemeral public key bytes (raw).

e service id bytes =32 raw bytes.

e service nonce = optional per-service nonce (random < 32B), reduces bruteforce.
e time window = floor(ts / TIME WINDOW).

Rationale: includes eph_pub to increase brute-force cost; service nonce prevents precompute;
time_window bounds lifetime.

1.4 Canonical serialization & signature input (must)

e Use Canonical CBOR (RFC 8949) as binary canonical form.

e Implementers using JSON MUST first canonicalize via JCS (JSON Canonicalization
Scheme) then CBOR-encode the result for signing/AAD.

o Signature input is CBOR-canonical bytes of object:

{ "hash": "<hex>", "ts": <uint64>, "service id": <32-byte raw> }

e service id must be raw bytes, not ASCII prefixed string.
e The AEAD associated data (AAD) for enc contact is the CBOR canonical serialization
of the full entry with the enc_contact field omitted.

Verification: Verifier reconstructs canonical CBOR and verifies Ed25519 over canonical bytes;
any deviation causes rejection.

1.5 enc_contact encryption (concrete KDF + AEAD)

Pseudocode (reference):

Client side: preparing enc contact

client x25519 priv, client x25519 pub = X25519 keypair()

shared = X25519 (client x25519 priv, service x25519 pub) # raw 32B
salt = service id bytes # 32B
info = b"lhdns/enc contact/v1"

K = HKDF SHA256 (shared, salt=salt, info=info, length=32)

aad = canonical cbor(entry without enc contact)

This appendix is part of the LHDNS Whitepaper v1.0 series.

ciphertext = XChaCha20 Polyl305 Seal (K, plaintext=enc contact plain cbor,
aad=aad)
enc_contact = base64 (ciphertext)

Service side:

shared = X25519 (service x25519 priv, client x25519 pub)

K = HKDF SHA256 (shared, salt=service id bytes, info=b"lhdns/enc contact/v1l",
length=32)

plaintext = XChaCha20 Polyl305 Open (K, ciphertext, aad=aad)

e plaintext must be canonical CBOR or JCS—CBOR.

e Use XChaCha20-Poly1305 (safe nonce); AES-GCM allowed with careful nonce
management & HW accel.

1.6 Entry canonical JSON (canonical structure for ledger)

Canonical entry fields (human-readable view — actual serialized bytes must be canonical
CBOR):

{

"version": 1,

"service id": "<32B raw or svc:sha256:...>",
"hash": "O0x...",

"eph pub": "<baset4>",

"enc contact": "<baset4>",

"ts": 1690000000,

"ttl": 30,

"sig": "<baseo64>",

"metadata": { ... }

e sig = Ed25519 signature over the canonical CBOR bytes of object { "hash": .., "ts":

"service id": .. }.
1.7 Local-node validation

Steps on reception:

1. Validate CBOR schema & version.

2. Check ts within CLOCK_SKEW.

3. Check tt1 within allowed bounds.

4. Recompute hash from eph _pub || service id || service nonce || time window.

5. Verify sig with eph_pub.

6. Reject malformed/oversize enc contact.

7. Rate-limit by eph_pub, circuit or authenticated account; optionally require PoW or
micro-fee.

8. Ifaccepted: index by service id, gossip, keep in-memory until ts + ttl + grace.

This appendix is part of the LHDNS Whitepaper v1.0 series.

1.8 Error codes (examples)

e 400 — schema error

e 401 — invalid signature
e 402 — fee/PoW required
e 429 — rate-limited

e 410 — expired

1.9 Testing checklist (Modulel)

e signature vectors, invalid sig rejection, ttl enforcement, PoW enforcement, enc contact
decrypt stress, replay tests.

Module 2 — Ledger & Propagation (DLN internals)

2.1 Goals

Low-latency ephemeral ledger optimized for short-lived indexed entries (not a permanent
blockchain). Prioritize memory/in-memory indexes, digest auditability, and fast gossip.

2.2 Roles

o Validator nodes: full validation, gossip, indexing, digest publication.

o Relay nodes: forward traffic, may not fully validate.

o Light/edge nodes: accept client submissions, perform quick validation.

e Auditor nodes: collect signed digests and perform cross-checks (optional).

2.3 Propagation model
e Epidemic gossip (push-pull).
e Default fanout k = Goss1p_rFanouT DEFAULT (5), adaptive by network size.
e Dedup via per-round Bloom filter.
e Partial redundancy: each entry gossips until TTL expiry or gossip horizon.
2.4 Storage model
e In-memory ephemeral store; no durable storage of full entries (only digests retained).
e Indexing key = service id — list of entries valid within [ts, ts + ttl].
e Grace window default +5s for clock skew.
2.5 Validation on gossip reception
e Schema/version check.

e Verify signature.
e Recompute hash.

This appendix is part of the LHDNS Whitepaper v1.0 series.

o Rate-limit per eph_pub & per peer.
e Index & propagate if valid; penalize peer on invalid.

2.6 Dedup & replay protection

e Each node maintains Bloom filter for recent hash values; duplicate suppressed.
e Replay prevented via (hash, eph_pub, ts) tuple uniqueness + bloom.

2.7 Gossip topology & peer sampling
e Unstructured P2P with partial views (Kademlia-like sampling recommended).
e Fanout adaptive: k = clamp(log2(N) * factor, min=3, max=12).
e Backoff under congestion.

2.8 Capacity & pruning

e Node memory cap configurable (e.g., 100k active entries).
e Prune by TTL + grace; maintain dropped-hash Bloom for short period to prevent replay.

2.9 Audit & Digest subsystem (full spec)

2.9.1 Merkle digest construction

e Leaf=5HA256 (0x00 || CBOR canonical (entry without enc contact)).
e Build binary Merkle tree over sorted leaf hashes (lexicographic).
e Root=s5HA256(0x01 || left || right) recursively.

2.9.2 Signed digest document (format)

{

"node id": "<b64 (node_pub)>",

"ts": 1690000000,

"interval seconds": 60,

"merkle root": "Ox...",

"entry count": 1234,

"bloom filter": "<base64>",

"sig": "<b64 (Sign_node (CBOR canonical (doc_except sig)))>"
}

APIs
e GET /digest/latest — returns latest signed digest JSON.
e POST /proof-——body{ "leaf hash": "Ox...", "digest ts": ... } — returns

inclusion proof (list of sibling hashes) or 404.

2.9.3 Audit cross-check protocol

This appendix is part of the LHDNS Whitepaper v1.0 series.

e Auditors fetch digests from random m validators; compare merkle root.
o If mismatches, request inclusion proofs from both sides to trace divergence.
e Discrepancy triggers governance notification; signed digests are evidence for slashing.

2.10 Anti-Sybil & node admission
e Node keys signed into P2P ID.
e Admission: stake OR PoW token (configurable).
e Reputation based on uptime/correctness; repeated misbehavior — ban.

2.11 Testing checklist (Module2)

o gossip latency under churn, digest correctness, partition recovery tests, replay injection
tests.

Module 3 — Service Delivery & Transport

3.1 Access model

e Services subscribe by service id to index and attempt to decrypt enc contact entries.

3.2 Connection bootstrap
Flow:

1. Client constructs hash & submits ledger entry (Modulel).

2. Validators propagate; service matches & decrypts enc_contact.

3. Service gets client contact (relay token, websocket conn id, etc.) and connects via
relay or client-initiated socket.

4. Mutual ECDH (X25519) — session keys; use DTLS/SRTP for media or secure
WebSocket/QUIC for data.

3.3 Transport options
o Direct (preferred): WebRTC (DataChannel), QUIC.
e Relay-assisted: TURN-like relays or LHDNS relays.
o Multipath: split on different relays for unlinkability.
3.4 Relay model & incentives
e Relays earn micro-payments via off-chain channels.
e Proof-of-forwarding required for rewards (tiny cryptographic receipts).

o Relays stake tokens for trust; low-reputation relays are deprioritized.

3.5 Failure modes & recovery

This appendix is part of the LHDNS Whitepaper v1.0 series.

o Ifentry expired or session broken — client re-resolves & retries (exponential backoff).
e Under service overload, enforce nonce validation or require micro-fee.

Module 4 — Privacy & Anonymity Enhancements

4.1 Goals
Sender/receiver anonymity, unlinkability, resist traffic-analysis.
4.2 Query privacy
e Optional onion submission: client routes submission via multiple relays to hide origin (3
hops default).
e Cover traffic & padding: nodes inject dummy entries; standardize entry size.
e Batching: group submissions in 100ms windows.
4.3 Ledger privacy
e Index blinding: per-epoch salt for hashed identifiers to prevent long-term correlation
(careful: requires epoch sync).
o Digests contain only digested leaf hashes; auditors hold proofs but not entries.

4.4 Transport privacy

e Multipath forwarding; relay rotation; optional mixnet integration for high-sensitivity
flows.

Module 5 — Trust, Governance & Sybil Resistance

5.1 Numeric & adaptive defaults (bootstrap)
« POW BASE BITS = 16; POW_ADAPT K = 2.0; clamp [8,28].

« STAKE MIN_VALIDATOR = 10k LHD; STAKE_MIN_RELAY = 100 LHD.
« REPUTATION DECAY HALF LIFE = 30 days.

5.2 Adaptive PoW formula

observed = submissions last minute / active clients estimate
target rate = 1.0 # per-client-per-minute baseline

delta = log2(max(observed/target_rate, 1.0))

new bits = clamp (POW BASE BITS + round(POW ADAPT K * delta), 8, 28)

Nodes include new bits in digest so clients adapt PoW.

5.3 Reputation & slashing

This appendix is part of the LHDNS Whitepaper v1.0 series.

e Reputation = moving-window metric of uptime, correctness, forwarding ratio.
e Misbehavior — slashing proportionate to stake.

5.4 Governance model

e On-chain param updates through proposals/votes (stake+reputation weighted).
o Emergency fast-quorum path for active attacks (time-locked adjustments).

Module 6 — Integration & Interoperability

6.1 Gateways
e Translate DNS names <> service id descriptors.
e Provide bootstrap descriptors for first-time connections (search engines, indexes).
o Gateways are trusted proxies for migration; minimize their use for privacy.
6.2 Dual-stack & Fallback policy
o LHDNS local node exposes a stub resolver (127.0.0.1:53 or DoH endpoint).
e No silent fallback to DNS — client must prompt user or have explicit config to allow
automatic fallback.
e Gateways must declare logging & manifest.
6.3 Enterprise opt-in logging
o Service side can request opt-in logging; enc_contact contains consent flag.

o Logging gateways must store logs off-ledger under enterprise control and publish signed
receipts.

Module 7 — Security & Threat Model

7.1 Actor models

e Local adversary (ISP), regional observer, global passive adversary (GPA), global active
adversary (GAA), colluding relays.

7.2 Threat—Mitigation (short)
Expand into a table for implementers (see later test & audit).

(See "Threat—Mitigation table" near end.)

Module 8 — Performance, Sharding & Scalability

This appendix is part of the LHDNS Whitepaper v1.0 series.

8.1 Sharding / partitioning
o Partition by first byte of service id (256 partitions); each partition replicated R =
REPLICATION FACTOR.
o Node assignment balanced by capacity score; cluster bridges for cross-region
subscriptions.
8.2 Epidemic gossip scaling
e O(log N) convergence expected; fanout adaptive.
8.3 KPI targets (operational)
e Descriptor fetch: P50 <150ms / P90 <300ms / P99 <800ms.
e Entry propagation: P50 <200ms / P90 <800ms / P99 <2s.

e E2E secure bootstrap: P50 <500ms / P90 <1.2s / P99 <2.5s.
e Node memory: target <100k active entries.

Module 9 — Monitoring, Metrics & Auditing

9.1 Metrics exposure

e /metrics endpoint (Prometheus style): histograms for submission latency, propagation
latency, digest mismatch count, peer-count, memory usage.

9.2 Audit procedures

e Auditors periodically fetch GET /digest/latest from a quorum, cross-check roots;
request inclusion proofs as needed; report misbehavior to governance.

Module 10 — Example End-to-End: Anonymous Chat
(Detailed)

(Condensed sequence including canonical message examples)

1. Descriptor & Nonce (service publishes descriptor):

{

"service id":"svc:sha256:afl2...bc",
"service pubkey":"<b64 (pub)>",
"accepted protocols":["webrtc","websocket"],

"nonce policy":{"rot interval":30}

}

2. Client prepares ephemeral context

This appendix is part of the LHDNS Whitepaper v1.0 series.

e Generate A _eph priv/pub. Choose onion path [R1,R2,R3].
3. Compute hash_token

e time window=floor (now/30)
e hash=SHA256 (LE32 (len(A eph pub)) ||A eph pub||service id||nonce service|
|LE64 (time window))

4. Build enc_contact_plain (CBOR canonical)

{
"client eph pub":"<b64>",

"client contact":{"type":"websocket","relay":"relay.example.net","conn id":"x
yz123"},

"ts":169XXXXXXX,

"nonce client":"randl28",

"client sig":"<sig on(hash]||ts)>"

}

9]

Encrypt enc_contact (Modulel) — build entry — submit via onion
6. DLN propagation (Module2) — service subscription sees entry — decrypts — verify
client sig —us€ client contact
7. Session establishment (Module3): service connects to relay or client-initiated socket;
ECDH — session keys; end-to-end AEAD used for media/data.
8. Teardown: after TTL entry removed; bloom filters short-lived prevent replay.
Expected latencies (practical)
e Descriptor fetch: 100-300 ms.

o Propagation to service: 200 ms — 1s typical.
e Session bootstrap: ~200—-800 ms depending on relays.

Test Vectors, Schema & Example JSON (for implementers)

Example canonical CBOR signing input (illustrative)

e CBOR-encode canonical object { "hash": "0x9f2a...6d", "ts": 169...,
"service id": <32 raw> } and sign with Ed25519.

Test vector (concrete)
e Provide known inputs and expected hash + sig for implementers to verify.

(Implementers: request full test vector file if needed — can be generated deterministically from
seed values.)

This appendix is part of the LHDNS Whitepaper v1.0 series.

Threat — Mitigation Table (expanded)

‘ Threat HLikelihoodH Impact H Mitigation H Residual Risk
Sybil (fake Medium | High PoW + stake + reputation (Module Reduced, not zero
nodes) 5)
Traffic . . Onion submission, multipath, cover GPA remains
. High High .
analysis traffic possible
Degcrlptor Medium [Medium Slgﬂgd Qescrlptors, gossip Low
poisoning validation, digest audits
. . +
Replay attacks| Medium |Medium Nonce + TTL tolfens, clock skew Low
policy
DoS (node . . Rate-limit, adaptive PoW, micro-
flooding) High High fees, slashing Manageable
Ephemeral key rotation, forward e
Key . Low High | secrecy (X25519 + HKDF), rapid Still eritical if long-
compromise : term keys leaked
revocation
Rela.y Medium | High Multipath ‘routlng, stake-we1ght§d Risk if large r.elay set
collusion relay selection, proof-of-forwarding compromised
CLOCK_SKEW =+60s, fallback Possible false
Clock desync | Medium |Medium| nonce server proof, adaptive PoW| negatives under
under skew severe desync

Operational notes & implementation checklist (summary)

(browsers/gateways) — mainnet.

Appendix: API endpoints (example)

gateway/local debugging).

GET /digest/latest — signed digest.
POST /proof — inclusion proof request.
/metrics — Prometheus metrics.

Implement canonical CBOR pipeline precisely (JSON—JCS—CBOR if using JSON).
Provide SDKs that hide canonicalization for application developers.

Implement digest collector/auditor service from day 0 (safety).
Phase rollout: private testnet — incentivized public testnet — pilot integrations

POST /entry — submit ledger entry (returns 202 accepted or error).
GET /resolve?service id=<id>— returns active entries for a service (for

Authentication & rate-limit: local nodes may require bearer tokens for high-volume
submissions (per implementer policy).

This appendix is part of the LHDNS Whitepaper v1.0 series.

Closing / final remarks

This Annex A is the final integrated technical report — canonical serialization, crypto bindings,
PoW/stake numbers, Merkle digest format + APIs, sharding plan, KPIs, testing checklists,
privacy mitigations, and end-to-end example flows are included and linked to specific modules.
Values marked as DEFAULTS are bootstrap values: they must be tuned on-testnet and then set

via governance.

This appendix is part of the LHDNS Whitepaper v1.0 series.

	Annex A — Extended Technical Report
	DEFAULTS / CONSTANTS (reference)
	Module 1 — Cryptographic & Identity Layer
	1.1 Goals
	1.2 Identifiers
	1.3 Hash-token formula (deterministic)
	1.4 Canonical serialization & signature input (must)
	1.5 enc_contact encryption (concrete KDF + AEAD)
	1.6 Entry canonical JSON (canonical structure for ledger)
	1.7 Local-node validation
	1.8 Error codes (examples)
	1.9 Testing checklist (Module1)

	Module 2 — Ledger & Propagation (DLN internals)
	2.1 Goals
	2.2 Roles
	2.3 Propagation model
	2.4 Storage model
	2.5 Validation on gossip reception
	2.6 Dedup & replay protection
	2.7 Gossip topology & peer sampling
	2.8 Capacity & pruning
	2.9 Audit & Digest subsystem (full spec)
	2.9.1 Merkle digest construction
	2.9.2 Signed digest document (format)
	2.9.3 Audit cross-check protocol

	2.10 Anti-Sybil & node admission
	2.11 Testing checklist (Module2)

	Module 3 — Service Delivery & Transport
	3.1 Access model
	3.2 Connection bootstrap
	3.3 Transport options
	3.4 Relay model & incentives
	3.5 Failure modes & recovery

	Module 4 — Privacy & Anonymity Enhancements
	4.1 Goals
	4.2 Query privacy
	4.3 Ledger privacy
	4.4 Transport privacy

	Module 5 — Trust, Governance & Sybil Resistance
	5.1 Numeric & adaptive defaults (bootstrap)
	5.2 Adaptive PoW formula
	5.3 Reputation & slashing
	5.4 Governance model

	Module 6 — Integration & Interoperability
	6.1 Gateways
	6.2 Dual-stack & Fallback policy
	6.3 Enterprise opt-in logging

	Module 7 — Security & Threat Model
	7.1 Actor models
	7.2 Threat→Mitigation (short)

	Module 8 — Performance, Sharding & Scalability
	8.1 Sharding / partitioning
	8.2 Epidemic gossip scaling
	8.3 KPI targets (operational)

	Module 9 — Monitoring, Metrics & Auditing
	9.1 Metrics exposure
	9.2 Audit procedures

	Module 10 — Example End-to-End: Anonymous Chat (Detailed)
	Expected latencies (practical)

	Test Vectors, Schema & Example JSON (for implementers)
	Example canonical CBOR signing input (illustrative)
	Test vector (concrete)

	Threat → Mitigation Table (expanded)
	Operational notes & implementation checklist (summary)
	Appendix: API endpoints (example)
	Closing / final remarks

